Efficient short interference RNA delivery to tumor cells using a combination of octaarginine, GALA and tumor-specific, cleavable polyethylene glycol system.
نویسندگان
چکیده
We recently developed a multifunctional envelope-type nano device (MEND) for efficient nucleic acid delivery. Here, we report on the development of an octaarigine (R8)-modified MEND encapsulating small interfering RNA (siRNA) with a tumor-specific, cleavable, polyethylene glycol (PEG)-lipid (PPD). We first determined the optimal concentration of R8 and pH-sensitive fusogenic peptide (GALA) on the lipid envelope of MEND (R8/GALA-MEND). Then, we examined the combination of optimized R8/GALA-MEND with a PEG-lipid. When a conventional PEG-lipid was used, the R8/GALA-MEND failed to knockdown expression of the target gene. On the other hand, PPD-modified R8/GALA-MEND exhibited efficient silencing activity to the level of the PEG-unmodified R8/GALA-MEND. In addition, we compared a R8/GALA-MEND with a MEND composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) that is a conventional cationic lipid used as a lipoplex component. The knockdown ability of the R8/GALA-MEND was much higher than that of the DOTAP-based MEND at the dose that is commonly employed in in vitro siRNA transfection. These results demonstrate that the R8/GALA-MEND is a promising delivery system for the transfer of siRNA to tumor cells.
منابع مشابه
A20 silencing by lipid envelope-type nanoparticles enhances the efficiency of lipopolysaccharide-activated dendritic cells.
In a previous report, we described the development of lipid envelope-type nanoparticles (MEND) modified with octaarginine (R8) and a pH-sensitive fusogenic peptide (GALA) for delivering short interference RNA (siRNA) to mouse dendritic cells (DCs). A20 was recently reported to be a negative regulator of the toll-like receptor and the tumor necrosis factor receptor signaling pathways. Although A...
متن کاملDiagnosis and Treatment of Small Bowel Cancers Using Radioactive Gold Nanoparticles and Wireless Fluorescence Capsule Endoscopy
Background: Therapeutic and diagnosis properties of radioactive gold nanoparticle (198-AuNPs) cause them to be suitable for detection and treatment of tumors.Objective: Electrical and optical properties of PEG-198AuNPs were examined in this paper. Polyethylene Glycol (PEG)-198 AuNPs can be used for treatment and diagnosis of small intestine tumors.Methods: Wireless fluorescence capsule endoscop...
متن کاملTargeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles.
Short nucleic acid sequences specific to oncogene targets such as bcl-2, bcr-abl, and c-myc have been shown to exhibit specific anti-cancer activity in vitro through antigene or antisense activity. Efficient in vivo delivery of oligonucleotides remains a major limitation for the therapeutic application of these molecules. We report herein on the preparation of transferrin-modified nanoparticles...
متن کاملPEGylation of biodegradable dextran nanogels for siRNA delivery.
Delivering intact small interfering RNA (siRNA) into the cytoplasm of targeted cells in vivo is considered a major obstacle in the development of clinically applicable RNA interference-based therapies. Although dextran hydroxyethyl methacrylate (dex-HEMA) nanogels have been reported to be suitable carriers for siRNA delivery in vitro, and are ideally sized (approximately 180 nm) for intravenous...
متن کاملBcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia
Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biological & pharmaceutical bulletin
دوره 32 5 شماره
صفحات -
تاریخ انتشار 2009